

Excellence in Engineering Since 1946

# Comprehensive Stormwater Master Plan Introduction and Overview



#### **City of Paducah, KY Commission Meeting**

February 28, 2017



## Selecting the SAN Selecting the Selecting

- Firm history brings confidence for successfully-delivered long-term program outcomes
- Iteam brings unparalleled local perspective for thorough identification of community concerns
- Stormwater management planning credentials highlight team's ability to deliver an effective capital improvements implementation program
- Work plan approach results in integrated solutions that recognize unique system characteristics
- Collaborative CSMP Approach leads to affordable and implementable action plan

#### **Comprehensive Stormwater Master Plan is Key to Addressing Community Flooding Concerns**



- 5 Major Watersheds
- Ohio River
- Flash Flooding
- Riverine Flood Influences
- Community Well Being

## **Rainfall Data Supports Flood Frequency Trends**



**Historical Rainfall Trends in Paducah** 

- Local influences
- River-induced influences
- Recurring events
- Homes and businesses



July 7, 2015 Flooding – Main Entrance Western Baptist Hospital



July 7, 2015 - Flooding at Oakcrest Apartments

## **Conveyance System Review Provides Foundation for Problem Area Understanding**



**Typical Brick Sewer Televising Footage** 

#### **STORMWATER SYSTEM EVALUATION NEEDS:**

- Size, Type & Locations Build Upon Current GIS System Mapping
- Condition Assessment CCTV Program to Identify Deficiencies
- System Capacity/Level of Service Stormwater Modeling

## LIDAR Mapping Uncovers Topographic Opportunities and Constraints

| CHALLENGES                                               | RESPONSE                                             |
|----------------------------------------------------------|------------------------------------------------------|
| Capacity and Condition of<br>Existing Stormwater Systems | Targeted Evaluations Stormwater<br>System Conditions |
| Steep Upland Topography, Flat<br>Lowland Topography      | Watershed Evaluation Process                         |

## AREAS WITH FLAT LOWLAND

- Heavily Urbanized, Limited Open Space
- Presence of Combined Sewer Systems
- Lack of Positive Overland Flood Routes
- Reliance on Pumping for Conveyance During High River Levels

#### AREAS WITH STEEP UPLAND TOPOGRAPHY

- Rapid Storm Response
- Portions are Located Outside of the City
- Potential for Future Development
- Flooding Problems Due to Lack of Adequate Floodplain Conveyance



LIDAR Topographic Relief Mapping for Study Area

### Floodwall Protected Areas Vulnerable to Multiple Flood Risks





Floodwall Protection: ~11,000 acres ~20,000 people ~\$1.2 billion in assets

| CHALLENGES                                          | RESPONSE                        |
|-----------------------------------------------------|---------------------------------|
| Capacity and Condition of                           | Targeted Evaluations Stormwater |
| Existing Stormwater Systems                         | System Conditions               |
| Steep Upland Topography, Flat<br>Lowland Topography | Watershed Evaluation Process    |
| Floodwall Interior Drainage,                        | Comprehensive Watershed         |
| Stormwater Pump Stations                            | Modeling                        |

Floodwall Murals at Kentucky Ave.



**Recently Sliplined Culverts at Noble Park Outfall** 

### **Combined Sewer System Areas Present Unique Partnering Considerations**



**Combined Sewer Service Area** 

- Separate System
- Combined System



| CHALLENGES                                               | RESPONSE                                               |
|----------------------------------------------------------|--------------------------------------------------------|
| Capacity and Condition of<br>Existing Stormwater Systems | Targeted Evaluations Stormwater<br>System Conditions   |
| Steep Upland Topography, Flat<br>Lowland Topography      | Watershed Evaluation Process                           |
| Floodwall Interior Drainage,<br>Stormwater Pump Stations | Comprehensive Watershed<br>Modeling                    |
| Combined Sewer System Areas                              | Implementation of Win/Win<br>Partnership Opportunities |



CSO 002 Outfall – Noble Park

"Collaboration: Key to Holistic Approach"

## Managing Expectations Key to Development of Feasible Solutions



#### **CURRENT LEVEL OF SERVICE**



#### **TARGET LEVEL OF SERVICE**

| CHALLENGES                                               | RESPONSE                                               |
|----------------------------------------------------------|--------------------------------------------------------|
| Capacity and Condition of<br>Existing Stormwater Systems | Targeted Evaluations Stormwater<br>System Conditions   |
| Steep Upland Topography, Flat<br>Lowland Topography      | Watershed Evaluation Process                           |
| Floodwall Interior Drainage,<br>Stormwater Pump Stations | Comprehensive Watershed<br>Modeling                    |
| Combined Sewer System Areas                              | Implementation of Win/Win<br>Partnership Opportunities |
| Public Expectations                                      | Clear Definition of Success                            |



Flood Reduction Benefits for Range of Storm Events – Winnetka, IL

## Cost-effective Solutions Foster Support for Financial Commitments



|            |   |     |        | Fi | City of F<br>General | Paducah<br>I Obliga<br>ar Debt | tion Bor | ky<br>ds<br>P+1) |  |  |  |
|------------|---|-----|--------|----|----------------------|--------------------------------|----------|------------------|--|--|--|
| 00,000 —   |   |     |        |    | Sear rea             | i best                         | Service  | ,                |  |  |  |
| 800,000 —  |   |     |        |    |                      |                                |          |                  |  |  |  |
| ,600,000   |   |     |        |    |                      |                                |          |                  |  |  |  |
| ,400,000 - |   |     |        |    |                      |                                |          |                  |  |  |  |
| 200.000    |   |     |        |    |                      |                                |          |                  |  |  |  |
| 000.000    |   |     |        |    |                      |                                |          |                  |  |  |  |
| 000,000    |   |     |        |    |                      |                                |          |                  |  |  |  |
| 800,000    |   |     |        |    |                      |                                |          |                  |  |  |  |
| 600,000    |   |     |        |    |                      |                                |          |                  |  |  |  |
| 400,000 -  |   |     |        |    |                      |                                |          |                  |  |  |  |
| 200,000 -  |   |     |        |    |                      |                                |          |                  |  |  |  |
| 0          | 4 | - 9 | <br>-0 |    | -2                   |                                |          |                  |  |  |  |

| Challenges                                               | Response                                               |
|----------------------------------------------------------|--------------------------------------------------------|
| Capacity and Condition of<br>Existing Stormwater Systems | Targeted Evaluations<br>Stormwater System Conditions   |
| Steep Upland Topography,<br>Flat Lowland Topography      | Watershed Evaluation Process                           |
| Floodwall Interior Drainage,<br>Stormwater Pump Stations | Comprehensive Watershed<br>Modeling                    |
| Combined Sewer System<br>Areas                           | Implementation of Win/Win<br>Partnership Opportunities |
| Public Expectations                                      | Clear Definition of Success                            |
| Cost Feasibility                                         | Funding Mechanism Evaluations                          |

#### **POTENTIAL STORMWATER FUNDING OPTIONS:**

- General Fund Revenues
- Stormwater Utility Fees
- Debt Financing
- Grants/Low Interest Loans
- Hazard Mitigation Grant Program (FEMA)

Paducah General Obligation Bonds

### **Misguided Public Perception Requires Carefully Planned Outreach Efforts**



#### **Citizen Questionnaires**

| CHALLENGES                                               | RESPONSE                                               |
|----------------------------------------------------------|--------------------------------------------------------|
| Capacity and Condition of Existing Stormwater Systems    | Targeted Evaluations Stormwater<br>System Conditions   |
| Steep Upland Topography, Flat<br>Lowland Topography      | Watershed Evaluation Process                           |
| Floodwall Interior Drainage,<br>Stormwater Pump Stations | Comprehensive Watershed Modeling                       |
| Combined Sewer System Areas                              | Implementation of Win/Win Partnership<br>Opportunities |
| Public Expectations                                      | Clear Definition of Success                            |
| Cost Feasibility                                         | Funding Mechanism Evaluations                          |
| Public Education & Support                               | Tailored Public and Stakeholder<br>Engagement Process  |



Stormwater Modeling **Results Validation** 





**City Commission Input Session** 

## Firm History Brings Confidence for Successfully Delivered Long-term Program Outcomes

- 70 years of service
- 380 employees
- 2 Kentucky offices
- 11 total locations
- Many specialties, including Community Master Planning



### **Project Team Brings Unparalleled Local Perspective for Thorough Identification of Community Concerns**



- Problem area identification
- Data collection
- Asset management
- Watershed evaluations
- H & H modelling
- Combined sewer system
- Flood PS & floodwalls



(As Needed) Additional 380+ Engineering & Technical Support Staff Available



### CSMP Credentials Highlight Ability to Deliver an Effective CIP Implementation Program



Watershed
 Characteristics

- Future Growth
- Design storm(s)
- Event-based Calibration
- Improvement Strategies
- Costing Methodology
- Prioritization Techniques

McCracken County Comprehensive Plan

## Major Community Master Planning Achievements Demonstrate Know-how for Getting the Job Done'

- STREAM STABILITY
- WQ/5R/MS4
- ASSET MANAGEMENT
- FLOODING























### Extensive XP-SWMM Experience Provides City Confidence in Our Stormwater Modeling Results

| XP-SWMM Modeling Experience                                        | 1-D | 2-D |
|--------------------------------------------------------------------|-----|-----|
| Cincinnati MSD, OH – Lick Run Watershed Design                     | ۵   | ۵   |
| N. KY SD1 – Boone County – Upper Woolper Creek Watershed Analysis  |     | ۵   |
| Dubuque, IA – Upper and Lower Bee Branch Creek Restoration         |     | ۵   |
| Frankfort, KY – CSO LTCP                                           | ۵   |     |
| Galena, IL – Downtown Stormwater Pumping Station                   |     | ٢   |
| Jeffersonville, IN – Downtown Canal Project Feasibility Study      |     | ۵   |
| Kenosha, WI – Forest Park Area Stormwater Management               |     | ۵   |
| Madison, WI – Willow Creek Watershed                               | ٢   |     |
| N. KY SD1 – Woodlawn Creek Watershed Drainage Improvements         | ٢   |     |
| Columbus, OH – Blueprint Clintonville – Stormwater Management Plan | ٢   | ۵   |
| Oshkosh, WI – Campbell Creek Watershed                             | ٢   | ۵   |
| Owensboro RWRA – CSO LTCP                                          | ۵   |     |
| Oshkosh, WI – Sawyer Creek Watershed Alternatives                  | ٢   |     |
| Sterling, IL – Locust Street Drainage Improvements                 | ٢   |     |
| UW-Madison Arboretum, WI – Phase 3 Stormwater Planning             | •   |     |
| UW-Madison, WI – West Campus Stormwater Master Plan                | ٢   |     |
| WisDOT – Verona Road Interchange, Madison, WI                      |     | •   |

## Work Plan Approach Results in Integrated Solutions that Recognize Unique System Characteristics



& Cross Creek

JSA XPSWMM Modeling of CSS

#### Our Process Asks Questions that Others Don't **Comprehensive Inventory and Analysis**

- **Natural Systems**
- **Built Systems**
- **Community Character**

- **Policy Issues**
- **Existing and Planned Projects**
- Stakeholders







Paducah Comprehensive Plan Informs Future Planning Considerations

### Data Collection Approach Establishes Framework for CSMP and Future Asset Management Program

- Field investigation
- Enhanced GIS shapefile
- Structure data (x, y & z)
- Condition assessment
- Open channel evaluations







#### State-of-the-Art XP-SWMM 2D Modeling Platform Provides Accurate and Illustrative Results

#### **ADVANTAGES INCLUDE:**

- Proper Representation of Flood Storage Volume
- Accurate Simulation of Overland Flood Routes
- Visual Flooding Extent and Depths Invaluable Tool for Communicating Results to the Public



XP-SWMM 2d existing vs. proposed flooding depths and extents results.

#### **EXISTING CONDITIONS, 100-YR, 3-HR EVENT**



#### PROPOSED CONDITIONS, 100-YR, 3-HR EVENT



### **Proven Model Calibration and Validation Techniques Provide Reliable Foundation for Sizing of Improvements**



NEXRAD Imagery of the July 2015 Event Over Paducah



Woolper Creek Modeling Benefits from NEXRAD

#### "Documented modeling results can increase public confidence in study"

## Flood Control Alternatives Needs to Consider Local Context and Reflect Realistic Costs

- Sizing of Controls/LOS
- Feasibility and Constructability
- Cost of Proposed Controls
- Reduction in Property Flooding



Cost-Benefit Analysis Helps Justify Potential Flood Control Expenditures



**Example of Potentially Impacted Structures Graphic** 



## **Relevant Case Studies**

#### Rapid Run Watershed – Cincinnati, OH FEMA / CSO Solution Open channel conveyance

#### Winnetka, IL

*Flat topo, Levee, CSS Robust public engagement* 

#### Bee Branch – Dubuque, IA

Levee/Floodwall Mississippi River Flood Buyouts

#### Woodlawn Creek – Newport, KY

Construction of a dam Allowed downstream development Removed homes from floodplain



#### **Comprehensive Solutions Extend Beyond Political and Jurisdictional Boundaries**



- Look Beyond Study Area
- Consider Partnerships
  - Paducah Parks Services
  - Delta Regional Authority
  - Common Sense Approach

## **Our Preliminary Understanding and Observations**



#### 565 566 Crookel Creek PROFILE EASELINE 30 NieCraeken County Uninsegpmentel Areas 210151 OAfcerst OAfcerst DOAfcerst DOAf

#### CROOKED CREEK WATERSHED

Areas Affected: Buckner Ln., Oakcrest Dr., Oakcrest Apts.



July 7, 2015 – Buckner Lane

#### **Perkins Creek Watershed**



#### Areas Affected: Days Inn, Hinkleville Rd. (US 60)



July 7, 2015 – Days Inn Along US 60.

#### **Cross Creek Watershed**



Areas Affected: 21<sup>st</sup> & Old Mayfield Rd., S. 24<sup>th</sup> St. Culvert, Morgan School Neighborhood



July 7, 2015 – 21<sup>st</sup> & Old Mayfield Rd.

## Noble Park – PS No. 1 Watershed

#### Areas affected: Noble Park, Madison St., Monroe St., 25th St.



LIDAR Topographic Data Indicates Lack of Overland Flood Route Over Park Ave.

#### "Flooding in Combined Sewer System Service Area"

July 7, 2015 – Madison St.

## **Other Downtown Areas**



Park Ave. & 9<sup>th</sup> St., 10<sup>th</sup> & Olive St., McCracken Co. Jail, 16<sup>th</sup> St. & Kentucky Ave., Baptist Hospital



July 7, 2015 Flooding – 16<sup>th</sup> & Kentucky Ave.



July 7, 2015 Flooding – Main Entrance Western Baptist Hospital

## Traditional Solutions Form the Backbone of Improvement Strategies

- Wet Detention/Retention
- Dry Detention
- Underground Storage
- Pump/Lift Stations
- Surface/Roadway Storage
- Maximizing Existing Infrastructure
- Storm Sewer
  Upgrades/Sewer
  Separation
- Consider Property Buyouts









# Our CSMP Approach Leads to Affordable and Implementable Action Plan

Key Master Planning Considerations Guide Approach



**Overall Study Map Showing Areas of Existing Flooding** 



## **Project Objectives**

- What will City achieve through the Master Plan?
  - Flood Mitigation CIP
    - Surface Flooding
    - Water in Basement (WIB)
    - CSOs
    - PS/Floodwall
  - Asset Management Program
    - Long Term CIP
    - O&M
  - Basis for Funding Mechanism
  - Future Growth/Development Considerations







## **Study Area**

- What are the limits of study area?
  - > Targeted Problem Areas
  - Separate Storm Sewer Area
  - Combined Sewer System
  - City of Paducah
  - County
  - Watershed



## **Community Engagement**

- Define Organizational Structure & Stakeholder Involvement Approach?
  - Technical Advisory Group (TAG)
    - City Engineer's Office
    - JSA/County
    - Strand/BFW
  - Stormwater Advisory Committee (SWAC)
  - Citizen/Public Involvement
  - City Manager/City Commission
    - Policy Decisions
    - Implementation Methodology



**City Commission Input Session** 

## **Project Implementation Overview**

#### What does the Master Planning Process Look Like?





"Similar approach to be used for subsequent phases"

"TAG (7), SWAC (3), Public (3), Commission (3)

## **CSMP** Deliverables

#### What will the deliverables include?

- Identification of 10 Priority Flood Areas
- Analysis of 20 Flood Mitigation Alternatives
- Benefit Cost Analysis/Prioritized Ranking
- Development of Capital Project Program

- Evaluation of Funding Options
- Asset Management Program Needs Analysis
- CIP Implementation Plan
- Early Action Projects





## Schedule

#### What are the Expectations for Schedule?

- Preliminary Engineering Evaluation
- Completion of Master Plan
- Identification of Early Action Projects
- Determination of Funding Approach
- Implementation of Master Plan Projects



## Schedule

#### CITY OF PADUCAH – CSMP PROJECT SCHEDULE



Pending Task (Task Order No.1)



